In May 2016, the global Assets Under Management (AUM) in ETFs were broadly estimated at around $3 tn USD. Just over one year later, research firm ETFGI estimated the AUM at $4.8 tn USD. With a general trend of ~20% AUM growth per year, and every expectation this trend will continue, the rise of ETFs continues to astound.

At Itiviti, we have observed the direct effects of this phenomenon in the arenas of proprietary trading and liquidity provision, as firms compete for new opportunities and the technological edge. However, with these new opportunities come new challenges, and following some targeted research and detailed market analysis, one challenge in particular resonates as critical to the success of today's ETF trading operation - static data and composition management.

But what problems exist, and how can they be overcome?

Despite being associated with reference data such as identifiers and listings, an ETF's composition is anything but static. A multitude of factors can shape and influence the composition, from fund rebalancing and creation/redemption activities through to dividends and other corporate actions, meaning a fund's holdings can change significantly day-to-day, or even intra-day. In a recent Itiviti survey, 92% of respondents cited static data and composition management as vital to their business, and it's easy to see why - without timely and accurate data, all other trading system functionalities are undermined, from pricing to quoting to risk management.

When coupled with the increasing numbers and complexity of these products, and the heightened regulatory environment as typified by MiFID II, the cost of failure is immense.

For this particular challenge, the solution is twofold - a timely and accurate source of data, and crucially, a specialized data model coupled with automated processing and associated workflows. On the first point, funds are compelled to release their full holdings on a daily basis, so this information is readily available. But considering the number of issuers involved, differences in publication time, medium and format, and the number of downstream integration points required, it quickly becomes a laborious process with multiple points of failure.

Another option is to homogenize and persist the raw data into a purpose-built, in-house data store. This provides a single, auditable 'golden source' for multiple downstream consumers but still comes with a great deal of overhead, and does this cost provide any edge? Finally, there are the vendor options including IHS Markit and ULTUMUS, offering standardized, timely and comprehensive data as a service, but which come with costs of their own.

The source of composition data is one side of the story, but just as important are the processes, workflows and data models required to utilize it. Full automation is a given, but there are other aspects that are quickly becoming market expectation. For example, can your trading system detect suspicious composition changes across thousands of ETFs, and provide explicit and actionable feedback in real-time? Can your trading system rule out 'false positives' due to corporate actions like splits or reverse splits, and conversely, detect that a composition does not reflect recent corporate actions? Can your data model handle all required baskets for a product, intra-day composition changes and fragmentation across countries and currencies?

The industry is rising to meet this challenge - for example, ULTUMUS have rolled out their ETF and index data solution, and at Itiviti, we have recently integrated our Tbricks by Itiviti trading system with IHS Markit's SOLA platform. Just like the data itself however, the industry is never static, with more and more demands being asked of vendors. New regulation, new product innovation and new trading strategies all drive data and functional requirements, with some firms now electing to employ multiple data sources overlaid by a comparison framework, for additional levels of resilience.

These developments are a testament to the criticality of data quality in the realm of ETF trading, and the challenges involved in utilizing it - the latter of which, Itiviti is committed to solving. 

Download the white paper

The Exchange-Traded Funds Marketplace in 2017.

Related content

TradeTech Europe 2020

Trade Tech has gone virtual so you can continue to learn from and network with your leading buy...

Read more
Balancing a new normal thumbnail

Accelerating the new way of working

Like most organizations during this pandemic, Itiviti’s main priorities focused on the health and safety of our employees...

Read more

The 18th Asia Pacific Trading Summit, 20 October, JW Marriott Hong Kong

Join Itiviti at the 18th Asia Pacific Trading Summit. This one-day, electronic trading event is known to bring...

Read more
handshake

Itiviti and Diginex partner to bring digital assets to institutional investors

The institutionalization of digital assets has taken a major step forward with a new partnership between Itiviti and...

Read more
Website thumbnail

In conversation with Diginex

We are glad to introduce our new podcast series “In conversation with” where Itiviti subject matter experts invite...

Read more

Webinar: NYFIX Matching for post-trade affirmation AMER

For the past two decades, the post-trade affirmation process was done either manually or through the Omgeo suite...

Read more
Middleware thumbnail

What the heck is “middleware” anyway?

Middleware is a term often thrown around when talking about technology, but what exactly does it mean? There...

Read more

Webinar: NYFIX Matching for post-trade affirmation EMEA

For the past two decades, the post-trade affirmation process was done either manually or through the OMGEO suite...

Read more
Website thumbnail gavin qa

Inside Customer Success at Itiviti with Gavin Welsh

Great companies have great leaders and at Itiviti we are no different. We’ve conducted a series of interviews...

Read more

Written by

Chris Anderson, Senior Product Manager, Itiviti

Share this insight